
Micro-Processor Services, Inc. http://www.mpsinc.com

Why Convert from ASM to C?

White Paper

By Avi Nudelman MSCS
Chief Technology Officer
Micro-Processor Services, Inc.
http://www.mpsinc.com
avin@mpsinc.com

Keywords: ASM C Assembly Assembler
ASM51 ASM86 ASM186 ASM286
ASM386 ASM486 MASM RASM
TASM ASM360 ASM370 ASM390
ASM6800 ASM68K PowerPC
Assembly Power Assembly ARM
Assembly Translation Tools Concept
Translation Simulation Translation

Introduction
In this white paper we describe the
reasons for moving from ASM to C.
We start with a description of ASM,
including its benefits and disadvantages,
and we finish with the benefits of C.
Our definition of ASM includes any
assembly language starting with
ASM51, all the way through to IBM390
assembly.

ASM Description
ASM is a low-level programming
language. ASM’s structure is very close
to the structure of computer hardware.
Writing code in ASM requires a large
amount of time and strict attention to
detail. ASM is usually used in
embedded programs where the
programming structure is very close to
the hardware details. This is especially
true when fast turnaround in execution is
required, i.e.: interrupt routines, high

speed numerical calculations, and other
tasks that require repeated execution and
therefore use large amounts of computer
time without optimization. Because
ASM requires programming so close to
the hardware details, it has a higher
propensity for bugs when any of those
details are missed. This makes ASM a
very verbose language that requires
many lines of code for even a simple
task.

Benefits of ASM

Very close to the hardware
ASM is a programming language whose
structure is very close to the hardware of
the computer. Every detail of the
computer hardware can be controlled
using the programming language. For
example, ASM360 has 360 different
instructions (which is where the old IBM
360 computer got its name). Most
micro-controllers today use fewer than
255 instructions. For example the 8051
microcontrollers use ASM51, which has
approximately 117 instructions.

ASM is very fast
Because the programmer has a wide
variety of instructions to choose from, he
can select the instruction or instructions
needed to minimize execution time. This

Why Convert from ASM to C? Page 1 of 3

http://www.mpsinc.com/

Micro-Processor Services, Inc. http://www.mpsinc.com

is good for the small, critical parts of a
program, such as interrupt service
routines, because it allows for the fast
processing of similar objects, and the
access of difficult hardware details.

Disadvantages of ASM

Low programming yield
It takes a long time to develop embedded
systems using ASM because of the large
amount of code required. With micro-
controller code memory now
approaching megabytes, the number of
ASM statements you need to write can
approach hundreds of thousands lines.
You need to be very creative to build
large systems with the small building
blocks that ASM offers. Each ASM line
can produce between 1-3 bytes for an
average of 2 bytes in an 8 bit micro-
controller and an average of 4 bytes in
an 16-bit micro-controller. This means
that in order to produce 1 megabyte of
code, you need to program 500,000 lines
for the 8 bit micro-controller and
250,000 lines for the 16 bit.

Slow to test and debug
This large volume of code necessitates a
larger amount of time test. The
complexity of checking all the possible
usages of the different registers will add
to the time needed to test and validate
the program.

Prone to bugs
The large number of lines in the program
guarantees the generation of a large
number of bugs. The complexity
involving the different registers will add
its share of bugs because ASM does not
check register usage.

Hard to maintain
ASM is hard to document because of the
volume of code. It is difficult to edit
without the possibility of introducing
additional bugs. If changing a routine,
the programmer needs to check not only
for bugs but also for additional side
effects for all users of the routine.
Assembler does not provide any bug
checking except for syntax.

No portability
Because ASM’s structure is so close to
the computer hardware, no two ASM
programs are the same. Therefore,
moving an ASM program from one
computer to the other inherently requires
a rewrite.

Large number of instructions
ASM requires significant time to master
because of the large volume of
instructions available.

Benefits of C

Higher level language
C has a small number of instructions to
learn when compared to ASM. It has
high level constructs for flow control,
which allow the programmer to build
basic concepts.

Higher yield
The higher level flow control
instructions make management of the
complexity of the program faster. In
addition, there is easy use of subroutines
and no need to worry about register
allocation. C allows the programmer to
focus on algorithm design.

Why Convert from ASM to C? Page 2 of 3

Micro-Processor Services, Inc. http://www.mpsinc.com

Easier to debug
C is easier to debug because it uses a
smaller number of lines, and allows the
use of symbolic debuggers.

Easy to maintain
Maintenance is easier because the C
compiler provides checking.

Portability
C source code is portable across many
computers because programs that were
written for one computer can be
recompiled and used on another
computer.

Types of translation
Concept translation
The concept type of translation converts
an ASM statement (one line or few
lines) to a C functional equivalent
statement. The primary goals of this type
of translation are to extract the business
rules embedded in the program and to
convey the concept and functionality of
the ASM code, rather than precise
implementation. Ultimate readability of
the translated program is the main
objective.

Simulation Translation
In the simulation translation, each ASM
statement is translated to a precise C
statement or a C function call that
simulates precisely the behavior of the
ASM statement. A run-time library in C
is provided that can be compiled for any
target. The goal in the simulation type of
translation is to enable the programmer
to run legacy programs on newer
hardware without any modification.
Readability of the resulting code is
secondary.

Tools to use
Micro-Processor Services, Inc. has a
number of software translator tools,
which incorporate both concept and
simulation translation, that enable you to
move your ASM source code to C. Here
are some of the Assembly to C porting
tools and their functions:

• ASM51C – converts assembly for

Intel 8051, 8052 and other to C
• MASM2C – converts Microsoft

MASM assembly to C
• RASM2C – converts Motorola

RASM01 RASM05 RASM09
RASM11 assembly to C

• ASM68C –converts ASM68xx
ASM6800, ASM6801, ASM6805,
ASM6809, and ASM6811 assembly
to C

• ASM68K2C – converts Motorola
ASM68K ASM68000, ASM 68010
ASM68020 and ASM68040
assembly to C

• ASM862C – converts all Intel
ASMx86, ASM86, ASM186,
ASM286, ASM386, ASM486
assembly to C

• TASM2C - converts Borland
assembly to C

• ASM360C – converts IBM 360
assembly to C

• ASM370C – converts IBM 370
assembly to C

• ASM390C – converts IBM 390
assembly to C

• PPC2C - converts PowerPC
assembly to C

Why Convert from ASM to C? Page 3 of 3

	Why Convert from ASM to C?
	Introduction
	ASM Description

	Benefits of ASM
	Very close to the hardware
	ASM is very fast

	Disadvantages of ASM
	Low programming yield
	Slow to test and debug
	Prone to bugs
	Hard to maintain
	No portability
	Large number of instructions

	Benefits of C
	Higher level language
	Higher yield
	Easier to debug
	Easy to maintain
	Portability
	Types of translation
	Tools to use

